Section 6.5: A GENERAL FACTORI NG STRATEGY

When you are done with your homework you should be able to...

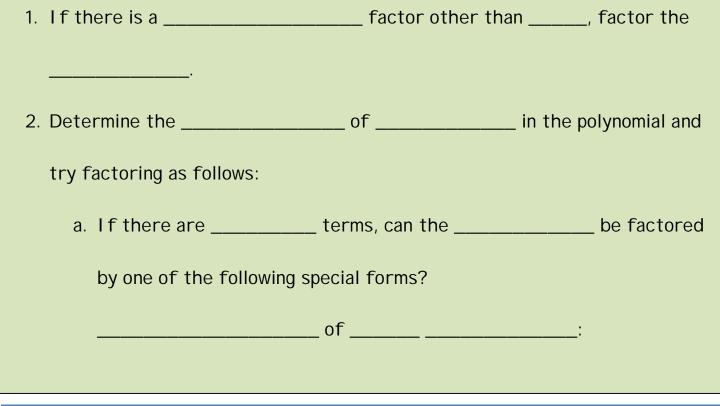
- π Recognize the appropriate method for factoring a polynomial
- π Use a general strategy for factoring polynomials

WARM-UP:

Multiply:

a. $(x+1)(x^2-x+1)$ b. $(2x-3y)(4x^2+6xy+9y^2)$

A STRATEGY FOR FACTORING A POLYNOMIAL



	of		
	of		:
k	o. If there are	terms, is the	a
	factor by one of the follow	ving special forms:	? If so,
		=	
	If the trinomial is		
	, try or		
C	c. If there are		
3. Che	by eck to see if any		
		can be fa	actored
	If so,		cely.
4	by	·	

Example 1: Factor

a. $5x^4 - 45x^2$

b. $4x^2 - 16x - 48$

c. $4x^5 - 64x$

d.
$$x^3 - 4x^2 - 9x + 36$$

e.
$$3x^3 - 30x^2 + 75x$$

f. $2w^5 + 54w^2$

g. $3x^4y - 48y^5$

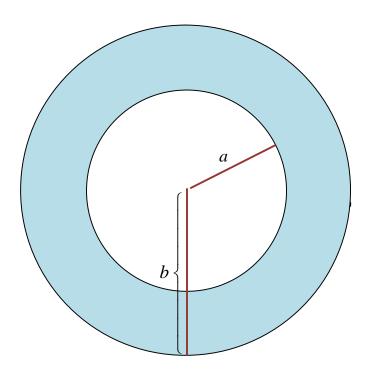
h. $12x^3 + 36x^2y + 27xy^2$

i.
$$12x^2(x-1)-4x(x-1)-5(x-1)$$

j.
$$x^2 + 14x + 49 - 16a^2$$

APPLICATION

Express the area of the shaded ring shown in the figure in terms of π . Then factor this expression completely.



Section 6.6: SOLVING QUADRATIC EQUATIONS BY FACTORING

When you are done with your homework you should be able to...

- π Use the zero-product principle
- π Solve quadratic equations by factoring
- π Solve problems using quadratic equations

WARM-UP:

a. Factor:

 $x^2 - 8x + 7$

b. Solve:

x - 7 = 0

DEFINITION OF A QUADRATIC EQUATION

A	in is an equation that can
be written in the	
where,, and are real	numbers, with A
	in is also called a
	equation in

SOLVING QUADRATIC EQUATIONS BY FACTORING

Consider the quadratic equation $x^2 - 8x + 7 = 0$. How is this different from the first warm-up?

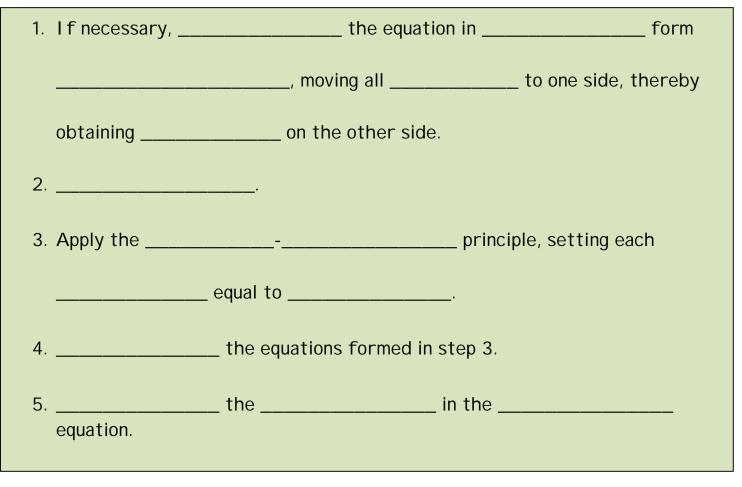
We can	the _		side of the	
equation		to get		If a quadratic
equation has a zero o	on one side a	and a		
on the other side, it	can be		using the	
	principle.			
THE ZERO-PRODU	CT PRINCIE	PLE		
If the	of	two or more		expressions is
If the				
	, then			
	, then			
	, then			

Example 1: Solve the following equations:

a. 2x - 11 = 0 b. x + 1 = 0

c. (2x-11)(x+1) = 0

STEPS FOR SOLVING A QUADRATIC EQUATION BY FACTORING



Example 2: Solve:

a.
$$x(x+9) = 0$$

b.
$$8(x-5)(3x+11) = 0$$

c.
$$x^2 + x - 42 = 0$$

d.
$$x^2 = 8x$$

e. $4x^2 = 12x - 9$

f. (x+3)(3x+5) = 7

$$g. \quad x^3 - 4x = 0$$

h.
$$(x-3)^2 + 2(x-3) - 8 = 0$$

APPLICATION

An explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The formula $h = -16t^2 + 72t$ describes the height of the debris above the ground, *h*, in feet, *t* seconds after the explosion.

a. How long will it take for the debris to hit the ground?

b. When will the debris be 32 feet above the ground?

Section 7.1: RATIONAL EXPRESSIONS AND THEIR SIMPLIFICATION

When you are done with your homework you should be able to...

- $\pi~$ Find numbers for which a rational expression is undefined
- π Simplify rational expressions
- π Solve applied problems involving rational expressions

WARM-UP:

a. Factor:

 $x^3 - 8x^2 + 2x - 16$

b. Solve: $2x^2 - x - 10 = 0$

EXCLUDING NUMBERS FROM RATIONAL EXPRESSIONS

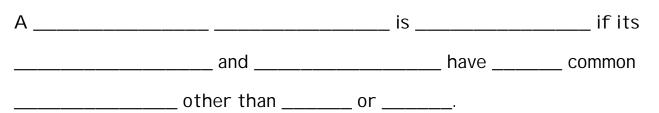
Α	expression is the	of two
	Rational expression	ns indicate
and division by	is	This means that we
	an	y value or values of the
that make a		!

Example 1: Find all numbers for which the rational expression is undefined:

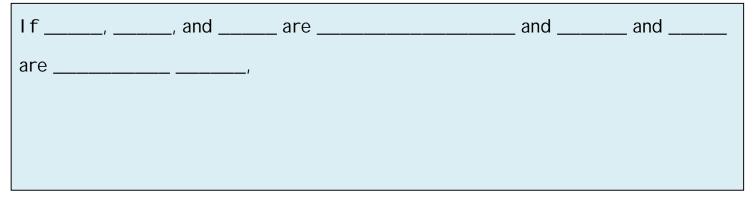
a.
$$\frac{5}{x}$$
 b. $\frac{x+1}{x-4}$

c.
$$\frac{8x-40}{x^2+3x-28}$$
 d. $\frac{x-12}{x^2+4}$

SIMPLIFYING RATIONAL EXPRESSIONS



FUNDAMENTAL PRINCIPLE OF RATIONAL EXPRESSIONS



STEPS FOR SIMPLIFYING RATIONAL EXPRESSIONS

1	_ the	_ and the
completely.		
2	both the	and the
	by any	

Example 2: Simplify:

a.
$$\frac{4x-64}{16x}$$

b.
$$\frac{6y+18}{11y+33}$$

c.
$$\frac{x^2 - 12x + 36}{4x - 24}$$

d.
$$\frac{x^3 + 4x^2 - 3x - 12}{x + 4}$$

e.
$$\frac{x+5}{x-5}$$

f.
$$\frac{x^3 - 1}{x^2 - 1}$$

SIMPLIFYING RATIONAL EXPRESIONS WITH OPPOSITE FACTORS IN THE NUMERATOR AND DENOMINATOR

The	_oftwo	that have
signs and are		is

Example 3: Simplify:

a. $\frac{x-3}{3-x}$

b.
$$\frac{9x-15}{5-3x}$$

c.
$$\frac{x^2 - 4}{2 - x}$$

APPLICATION

A company that manufactures small canoes has costs given by the equation

$$C = \frac{20x + 20000}{x}$$

in which x is the number of canoes manufactured and C is the cost to manufacture each canoe.

a. Find the cost per canoe when manufacturing 100 canoes.

b. Find the cost per canoe when manufacturing 10000 canoes.

c. Does the cost per canoe increase or decrease as more canoes are manufactured?

Section 7.2: MULTIPLYING AND DIVIDING RATIONAL EXPRESSIONS

When you are done with your homework you should be able to...

- π Multiply rational expressions
- π Divide rational expressions

WARM-UP:

Simplify:

a.
$$\frac{a^2 - 2ab + b^2}{a^2 - b^2}$$
 b. $\frac{x^2 - 3x + 2}{x - 1}$

MULTIPLYING RATIONAL EXPRESSIONS

lf,,	,, and	_ are polynomials, where ar	nd
, then			
The	of two		is
the	of their	, divided by the	
	of their	·	

STEPS FOR MULTIPLYING RATIONAL EXPRESSIONS

1	all	and	·
2		and	by
common			
3	the rem	aining factors in the	
and	the	remaining factors in the	
Example 1: Multiply.			

	<i>x</i> -5 18	•	1 y-2
а.	$\overline{3}$ $\overline{x-8}$	c. $\overline{y^2-2y}$	$y \overline{3y+7}$

b.
$$\frac{x}{5} \cdot \frac{30}{x-4}$$
 d. $\frac{x^2 + 5x + 6}{x^2 + x - 6} \cdot \frac{x^2 - 9}{x^2 - x - 6}$

DIVIDING RATIONAL EXPRESSIONS

lf,,	, and	are polynomials, where,	
and, then			
The	of two		_ is
the	_ of the	expression and the	
of the			

Example 2: Divide.

	$\frac{x}{-3}$		$y^2 - 2y$. y-2
a.	$\overline{3}\overline{8}$	С.	15	5

b.
$$\frac{x+5}{7} \div \frac{4x+20}{9}$$

d. $\frac{x^2-4y^2}{x^2+3xy+2y^2} \div \frac{x^2-4xy+4y^2}{x+y}$

Example 3: Perform the indicated operation or operations.

a.
$$\frac{5x^2 - x}{3x + 2} \div \left(\frac{6x^2 + x - 2}{10x^2 + 3x - 1} \cdot \frac{2x^2 - x - 1}{2x^2 - x} \right)$$

b.
$$\frac{5xy - ay - 5xb + ab}{25x^2 - a^2} \div \frac{y^3 - b^3}{15x + 3a}$$

Section 7.3: ADDI NG AND SUBTRACTI NG RATI ONAL EXPRESSIONS WITH THE SAME DENOMINATOR

When you are done with your homework you should be able to...

- π Add rational expressions with the same denominator
- π Subtract rational expressions with the same denominator
- $\pi~$ Add and subtract rational expressions with opposite denominators

WARM-UP:

Simplify:

a.
$$\frac{b^2 - a^2}{a^2 - b^2}$$
 b. $\frac{x^2 - 2x + 1}{1 - x}$

ADDING RATIONAL EXPRESSIONS WITH COMMON DENOMINATORS

lf	_ and	are	expressions, then
То		rational overaccions with the	
10		Tational expressions with the _	
add		and place the	over the
		If possible,	the result.

SUBTRACTING RATIONAL EXPRESSIONS WITH COMMON DENOMINATORS

lf	_ and	_ are	expressions, the	n
То		rational expressions with the		
subtract		and place the		over the
		I	f possible,	
the resul	t.			

Example 1: Add or subtract as indicated. Simplify the result, if possible.

a.
$$\frac{x}{15} + \frac{4x}{15}$$
 c. $\frac{x}{x-1} - \frac{1}{x-1}$

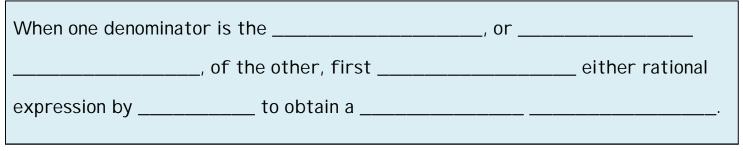
b.
$$\frac{x+4}{9} + \frac{2x-25}{9}$$
 d. $\frac{3x+2}{3x+4} + \frac{3x+6}{3x+4}$

e.
$$\frac{x^3-3}{2x^4} - \frac{7x^3-3}{2x^4}$$

f.
$$\frac{x^2 + 9x}{4x^2 - 11x - 3} + \frac{3x - 5x^2}{4x^2 - 11x - 3}$$

g.
$$\frac{3y^2 - 2}{3y^2 + 10y - 8} - \frac{y + 10}{3y^2 + 10y - 8} - \frac{y^2 - 6y}{3y^2 + 10y - 8}$$

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS WITH OPPOSITE DENOMINATORS



Example 2: Add or subtract as indicated. Simplify the result, if possible.

a.
$$\frac{6x+7}{x-6} + \frac{3x}{6-x}$$
 c. $\frac{4-x}{x-9} - \frac{3x-8}{9-x}$

b.
$$\frac{x^2}{x-3} + \frac{9}{3-x}$$
 d. $\frac{2x+3}{x^2-x-30} + \frac{x-2}{30+x-x^2}$

Section 7.4: ADDING AND SUBTRACTING RATIONAL EXPRESSIONS WITH DIFFERENT DENOMINATORS

When you are done with your homework you should be able to...

- π Find the least common denominator
- $\pi~$ Add and subtract rational expressions with different denominators

WARM-UP: Perform the indicated operation and simplify.

a.
$$\frac{-3}{8} + \frac{5}{12}$$
 b. $\frac{x+2}{x^2+x} + \frac{-1}{x^2+x}$

FINDING THE LEAST COMMON DENOMINATOR (LCD)

The		denominator of several		
		_ is a	consisting	
Of the	of all		in	
the	, with each		raised to the greatest	
	of its occurrence in ar	ny denomin	ator.	

FINDING THE LEAST COMMON DENOMINATOR

1.	each completely.	
2.	List the factors of the first	
3.	Add to the list in step 2 any of the second denominator	
th	it do not appear in the list. Repeat this step for all denominators.	
	Form the of the from the list in step 3. This product is the LCD.	

Example 1: Find the LCD of the rational expressions.

a.
$$\frac{11}{25x^2}$$
 and $\frac{17}{35x}$ b. $\frac{7}{y^2 - 49}$ and $\frac{12}{y^2 - 14y + 49}$

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS THAT HAVE DIFFERENT DENOMINATORS

1. Find the of the	<u>.</u> .
2. Rewrite each rational expression as an expression	
whose is the	
 Add or subtract, placing the resulting expression over the LCD. 	
4. If possible, the resulting rational expression.	

Example 2: Add or subtract as indicated. Simplify the result, if possible.

a.
$$\frac{5}{6x} + \frac{7}{8x}$$

b.
$$3 + \frac{1}{x}$$

c.
$$\frac{2}{3x} + \frac{x}{x+3}$$

d.
$$\frac{y}{y-5} - \frac{y-5}{y}$$

e.
$$\frac{3x+7}{x^2-5x+6} - \frac{3}{x-3}$$

f.
$$\frac{5}{x^2 - 36} + \frac{3}{(x+6)^2}$$

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS WHEN DENOMINATORS CONTAIN OPPOSITE FACTORS

When one denominat	or contains the		factor of the other, first
	_either rational express	sion by	Then apply the
	_ for	_ or	rational
expressions that hav	e		

Example 3: Add or subtract as indicated. Simplify the result, if possible.

a.
$$\frac{x+7}{4x+12} + \frac{x}{9-x^2}$$

b.
$$\frac{5x}{x^2 - y^2} - \frac{2}{y - x}$$

c.
$$\frac{7y-2}{y^2-y-12} + \frac{2y}{4-y} + \frac{y+1}{y+3}$$

Section 7.5: COMPLEX RATIONAL EXPRESSIONS

When you are done with your homework you should be able to...

- π Simplify complex rational expressions by dividing
- $\pi~$ Simplify complex rational expressions by multiplying by the LCD

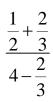
WARM-UP: Perform the indicated operation. Simplify, if possible.

a.
$$\frac{x+1}{x} + \frac{3x}{x+1}$$
 b. $\frac{x^2 + x}{x^2 - 4} \div \frac{12x}{2x - 4}$

SIMPLIFYING A COMPLEX RATIONAL EXPRESSION BY DIVIDING

1. If necessary, add or sub	otract to get a	rational expression in
the	·	
2. If necessary, add or sub	otract to get a	rational expression in
the	·	
3. Perform the	indicated by t	the main
bar:	_ the denominator of the o	complex rational expression
and		
4. If possible,		

Let's simplify the problem below using this method:



Now let's replace the constants with variables and simplify using the same method. $\frac{\frac{1}{x} + \frac{2}{x+1}}{4 - \frac{2}{x+1}}$ Example 1: Simplify each complex rational expression.

a.
$$\frac{\frac{4}{5} - x}{\frac{4}{5} + x}$$

b.
$$\frac{\frac{1}{x} + \frac{1}{y}}{\frac{1}{x} - \frac{1}{y}}$$

c.
$$\frac{\frac{8}{x^2} - \frac{2}{x}}{\frac{10}{x} - \frac{6}{x^2}}$$

d.
$$\frac{\frac{1}{x-2}}{1-\frac{1}{x-2}}$$

SIMPLIFYING A COMPLEX RATIONAL EXPRESSION BY MULTIPLYING BY THE LCD

1.	Find the LCD of ALL expressions within the
	rational expression.
2.	both the and by
	this LCD.
3.	Use the property and multiply each in the
	numerator and denominator by this
	term. No expressions should remain.
4.	If possible, and

Let's simplify the earlier problem using this method:

 $\frac{\frac{1}{2} + \frac{2}{3}}{4 - \frac{2}{3}}$

Now let's replace the constants with variables and simplify using the same method. $1 \quad 2$

 $\frac{\frac{1}{x} + \frac{2}{x+1}}{4 - \frac{2}{x+1}}$

Example 2: Simplify each complex rational expression.

a.
$$\frac{4 - \frac{7}{y}}{3 - \frac{2}{y}}$$

b.
$$\frac{\frac{3}{x} + \frac{x}{3}}{\frac{x}{3} - \frac{3}{x}}$$

c.
$$\frac{\frac{2}{x^{3}y} + \frac{5}{xy^{4}}}{\frac{5}{x^{3}y} - \frac{3}{xy}}$$

d.
$$\frac{\frac{1}{x-2}}{1-\frac{1}{x-2}}$$

Example 3: Simplify each complex rational expression using the method of your choice.

a.
$$\frac{\frac{3}{x+2} - \frac{3}{x-2}}{\frac{5}{x^2 - 4}}$$

b.
$$\frac{y^{-1} - (y+2)^{-1}}{2}$$

Application:

The average rate on a round-trip commute having a one-way distance d is given by the complex rational expression $\frac{2d}{r_1} + \frac{d}{r_2}$ in which r_1 and r_2 are the average rates

on the outgoing and return trips, respectively.

a. Simplify the expression.

b. Find your average rate if you drive to the campus averaging 40 mph and return home on the same route averaging 30 mph.

Section 7.6: SOLVING RATIONAL EQUATIONS

When you are done with your homework you should be able to...

- π Solve rational equations
- π Solve problems involving formulas with rational expressions
- π Solve a formula with a rational expression for a variable

WARM-UP:

Solve.

 $3x^2 - 2x - 8 = 0$

SOLVING RATIONAL EQUATIONS

1.	ist on the variable. (Remember—no in the denominator!)
2.	Clear the equation of fractions by multiplying sides of the
	equation by the LCD of rational expressions in the equation.
3.	the resulting equation.
4.	Reject any proposed solution that is in the list of on the
	variable other proposed solutions in theequation.

Example 1: Solve each rational equation.

a.
$$\frac{7}{2x} = \frac{5}{3x} + \frac{22}{3}$$

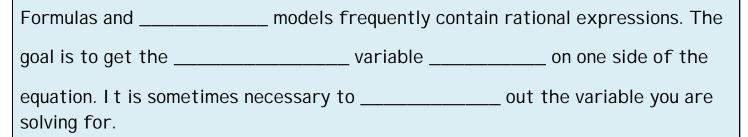
b.
$$\frac{10}{y+2} = 3 - \frac{5y}{y+2}$$

c.
$$\frac{x-1}{2x+3} = \frac{6}{x-2}$$

d.
$$\frac{2t}{t^2+2t+1} + \frac{t-1}{t^2+t} = \frac{6t+8}{t^3+2t^2+t}$$

e.
$$3y^{-2} + 1 = 4y^{-1}$$

SOLVING A FORMULA FOR A VARIABLE



Example 2: Solve each formula for the specified variable.

a.
$$\frac{V_1}{V_2} = \frac{P_2}{P_1}$$
 for V_2

b.
$$z = \frac{x - \overline{x}}{s}$$
 for x

c.
$$f = \frac{f_1 f_2}{f_1 + f_2}$$
 for f_2

Section 7.7: APPLICATIONS USING RATIONAL EQUATIONS AND PROPORTIONS

When you are done with your homework you should be able to...

- π Solve problems involving motion
- $\pi~$ Solve problems involving work
- π Solve problems involving proportions
- π Solve problems involving similar triangles

WARM-UP:

A motorboat traveled 36 miles downstream, with the current, in 1.5 hours. The return trip upstream, against the current, covered the same distance, but took 2 hours. Find the boat's rate in still water and the rate of the current.

PROBLEMS I NVOLVI NG MOTI ON

Recall that Ratio	nal expressions appear in
problems when the conditions of	the problem involve the traveled.
When we isolate time in the form	nula above, we get

Example 1: As part of an exercise regimen, you walk 2 miles on an indoor track. Then you jog at twice your walking speed for another 2 miles. If the total time spent walking and jogging is 1 hour, find the walking and jogging rates. Example 2: The water's current is 2 mph. A canoe can travel 6 miles downstream, with the current, in the same amount of time that it travels 2 miles upstream, against the current. What is the canoe's average rate in still water?

PROBLEMS I NVOLVI NG WORK

In problems, the number represents one job
Equations in work problems are based on the following
condition:

Example 3: Shannon can clean the house in 4 hours. When she worked with Rory, it took 3 hours. How long would it take Rory to clean the house if he worked alone?

Example 4: A hurricane strikes and a rural area is without food or water. Three crews arrive. One can dispense needed supplies in 10 hours, a second in 15 hours, and a third in 20 hours. How long will it take all three crews working together to dispense food and water?

A <u>**ratio**</u> is the quotient of two numbers or two quantities. The ratio of two numbers *a* and *b* can be written as

a to *b* or a:b or $\frac{a}{b}$

A **proportion** is an equation of the form $\frac{a}{b} = \frac{c}{d}$, where $b \neq 0$ and $d \neq 0$. We call a, b, c, and d the **terms** of the proportion. The cross-products ad and bc are equal.

Example 5: According to the authors of *Number Freaking*, in a global village of 200 people, 9 get drunk every day. How many of the world's 6.9 billion people (2010 population) get drunk every day?

Example 6: A person's hair length is proportional to the number of years it has been growing. After 2 years, a person's hair grows 8 inches. The longest moustache on record was grown by Kalyan Sain of I ndia. Sain grew his moustache for 17 years. How long was each side of the moustache?

SIMILAR FIGURES

Two figures are **<u>similar</u>** if their corresponding angle measures are equal and their corresponding sides are proportional.

Example 7: A fifth-grade student is conducting an experiment to find the height of a tree in the schoolyard. The student measures the length of the tree's shadow and then immediately measures the length of the shadow that a yardstick forms. The tree's shadow measures 30 feet and the yardstick's shadow measures 6 feet. Find the height of the tree.

Section 8.1: INTRODUCTION TO FUNCTIONS

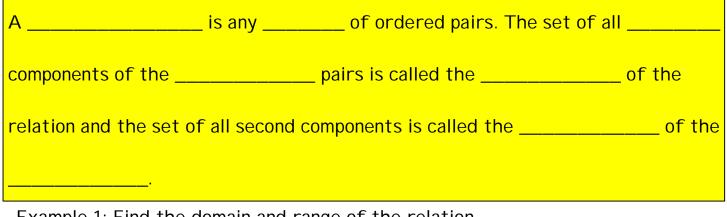
When you are done with your homework you should be able to...

- $\pi~$ Find the domain and range of a relation
- π $\,$ Determine whether a relation is a function
- π Evaluate a function

WARM-UP:

Evaluate $y = -x^2 - 22x + 5$ at x = -3.

DEFINITION OF A RELATION



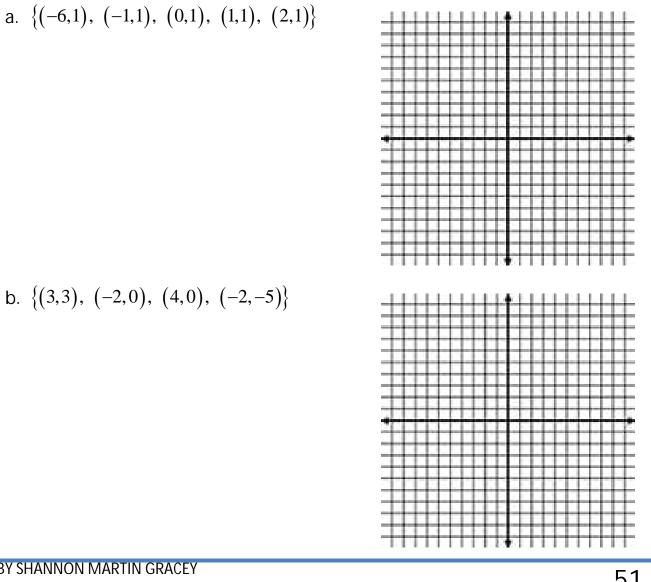
Example 1: Find the domain and range of the relation.

VEHICLE	NUMBER OF WHEELS
CAR	4
MOTORCYCLE	2
BOAT	0

DEFINITION OF A FUNCTION

A	is a	from a first	set, called the
	, to a second set, ca	alled the	, such that each
	in the	corresponds to	
element in the _	·		

Example 2: Determine whether each relation represents a function. Then identify the domain and range.



FUNCTIONS AS EQUATIONS AND FUNCTION NOTATION

Functions are often given in terms of	rather than as
of describes the position of an object, in fe after x seconds.	
$y = -16x^2 + 5$	00
The variable is a o	f the variable For each value of x ,
there is one and only one value of	The variable x is called the
variable because it ca	n be any value from
the The variable <i>y</i> is	s called the variable
because its value on x.	When an
represents a, the fu	nction is often named by a letter such as
f, g, h, F, G, or H. Any letter can be u	used to name a function. The domain is
the of the function's	and the range is the of the
function's If we name	e our function, the input is
represented by, and the output is r	represented by The notation
is read " of" or " at _	So we may rewrite $y = -16x^2 + 500$
as Now let's ev	valuate our function after 10 seconds:

Example 3: Find the indicated function values for $f(x) = (-x)^3 - x^2 - x + 10$.

- a. f(0)
- b. f(2)
- c. f(-2)
- d. f(1) + f(-1)

Example 3: Find the indicated function and domain values using the table below.

a. $h(-2)$		
b. h(1)		

c. For what values of x is h(x) = 1?

x	h(x)
-2	2
-1	1
0	0
1	1
2	2

Section 8.2: GRAPHS OF FUNCTIONS

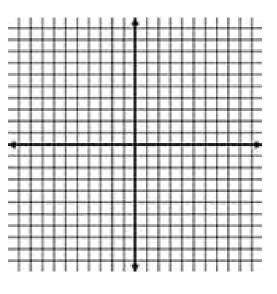
When you are done with your homework you should be able to...

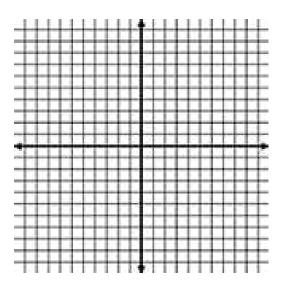
- $\pi~$ Use the vertical line test to identify functions
- $\pi~$ Obtain information about a function from its graph
- π Review interval notation
- π -I dentify the domain and range of a function from its graph

WARM-UP:

Graph the following equations by plotting points.

a.
$$y = x^2$$



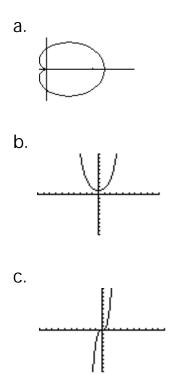


b. y = 3x - 1

THE VERTICAL LINE TEST FOR FUNCTIONS

If any vertical line		_ a graph in more than	
the graph	define	as a function of	

Example 1: Determine whether the graph is that of a function.



OBTAINING INFORMATION FROM GRAPHS

You can obtain information about a function from its graph. At the right or left of

a graph, you will often find ______ dots, _____ dots, or _____.

 π A closed dot indicates that the graph does not _____ beyond this

point and the _____ belongs to the _____

 π An open dot indicates that the graph does not _____ beyond this

point and the _____ DOES NOT belong to the _____

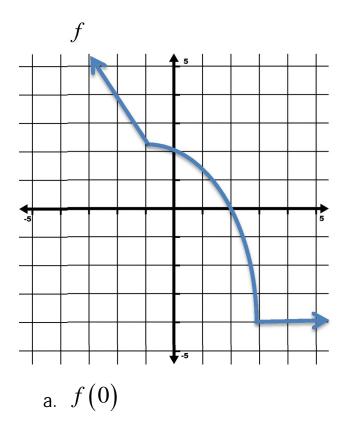
π	An arrow indicates that	t the graph extends	in the
---	-------------------------	---------------------	--------

direction in which the arrow	
------------------------------	--

REVIEWING INTERVAL NOTATION

I NTERVAL NOTATI ON	SET-BUILDER NOTATION	GRAPH
(a,b)		$\longleftrightarrow x$
[a,b]		$\leftarrow x$
[a,b)		$\leftarrow x$
(a,b]		<> <i>x</i>
(a,∞)		<> <i>x</i>
$[a,\infty)$		$\leftarrow \qquad \rightarrow x$
$(-\infty,b)$		$\leftarrow x$
$(-\infty, b]$		$\leftarrow \qquad \rightarrow x$
$(-\infty,\infty)$		$\longleftrightarrow x$

Example 2: Use the graph of f to determine each of the following.

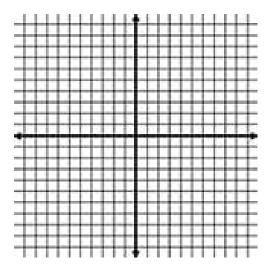


- ь. f(-2)
- c. For what value of x is f(x) = 3?
- d. The domain of $\,f\,$
- e. The range of \boldsymbol{f}

Example 3: Graph the following functions by plotting points and identify the domain and range.

b.
$$H(x) = x^2 + 1$$

a. f(x) = -x - 2



Section 8.3: THE ALGEBRA OF FUNCTIONS

When you are done with your homework you should be able to...

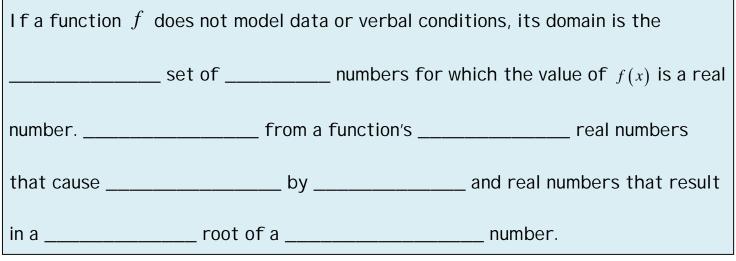
- $\pi~$ Find the domain of a function
- $\pi~$ Use the algebra of functions to combine functions and determine domains

WARM-UP:

Find the following function values for $f(x) = \sqrt{x}$

- a. f(4)
- b. f(0)
- c. f(196)

FINDING A FUNCTION'S DOMAIN



Example 1: Find the domain of each of the following functions.

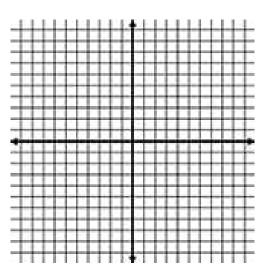
a. $f(x) = \sqrt{x-1}$ b. $g(x) = \frac{4-x}{1-x^2}$ c. h(t) = 3t+5

THE ALGEBRA OF FUNCTIONS

Consider the following two functions:

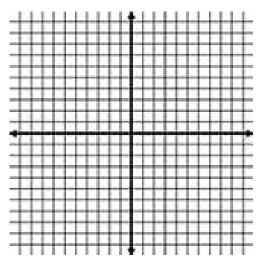
$$f(x) = -x$$
 and $g(x) = 3x - 5$

Let's graph these two functions on the same coordinate plane.



Now find and graph the sum of f and g.

(f+g)(x) =



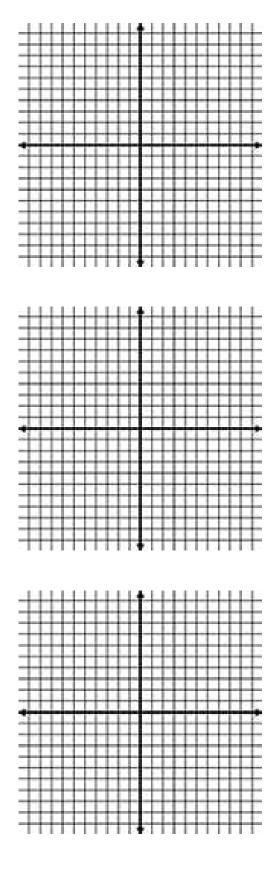
Now find and graph the difference of f and g.

$$(f-g)(x) =$$

Now find and graph the product of f and g.

(fg)(x) =

Now find and graph the quotient of f and g.



THE ALGEBRA OF FUNCTIONS: SUM, DIFFERENCE, PRODUCT, AND QUOTIENT OF FUNCTIONS

Let f and g be two functions. The	f+g , the	$f-g$,
the fg , and the	$\frac{f}{g}$ are	whose
domains are the set of all real numbers and g , defined as follows:	to the	e domains of f
1. Sum:		
2. Difference:		
3. Product:		
4. Quotient:	, provided	

Example 2: Let $f(x) = x^2 + 4x$ and g(x) = 2 - x. Find the following:

a. (f+g)(x) d. (fg)(x)

b. (f+g)(4)e. (fg)(3)

c. f(-3) + g(-3)

f. The domain of $\left(\frac{f}{g}\right)(x)$

Section 8.4: COMPOSITE AND INVERSE FUNCTIONS

When you are done with your homework you should be able to...

- π Form composite functions
- π Verify inverse functions
- $\pi~$ Find the inverse of a function
- $\pi\,$ Use the horizontal line test to determine if a function has an inverse function
- $\pi~$ Use the graph of a one-to-one function to graph its inverse function

WARM-UP:

Find the domain and range of the function $\{(-1,0), (0,1), (1,2), (2,3)\}$:

THE COMPOSITION OF FUNCTIONS

The composition of the function defined by the equation	with	is denoted by	and is
The domain of the such that	function	is the set of all _	
1 is in the domain of	and		
2 is in the domain of			

Example 1: Given $f(x) = -x^2 + 8$ and g(x) = 6x - 1, find each of the following composite functions.

a.
$$(f \circ g)(x)$$
 b. $(g \circ f)(x)$

DEFINITION OF THE INVERSE OF A FUNCTION

Let f and g be two functions such that				
	for every	_ in the domain of		
and				
	for every	_ in the domain of		
The function	_ is the	of the func ⁻	tion	and is denoted
by (read "	f -inverse"). Thus _		_ and	·
The	of is equ	al to the	of_	and
vice versa.				

Example 2: Show that each function is the inverse of the other.

$$f(x) = 4x + 9$$
 and $g(x) = \frac{x-9}{4}$

FINDING THE INVERSE OF A FUNCTION

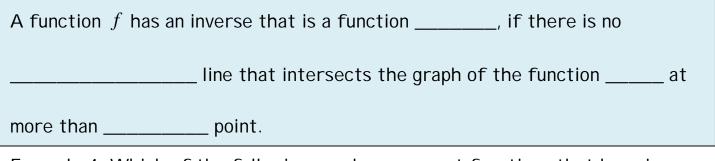
The equation of the inverse of a function f can be found as follows:	
1. Replace with in the equation for	
2. Interchange and	
3. Solve for If this equation does not define as a function of,	
the function doe not have an function and this	
procedure ends. If this equation does define as a function of, the	
function has an inverse function.	
4. If has an inverse function, replace in step 3 with We can	
verify our result by showing that and	

Example 3: Find an equation for $f^{-1}(x)$, the inverse function.

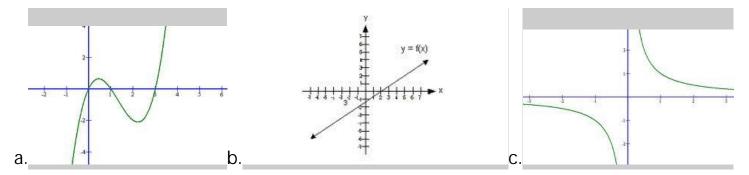
a.
$$f(x) = 4x$$

b. $f(x) = \frac{2x-3}{x+1}$

THE HORIZONTAL LINE TEST FOR INVERSE FUNCTIONS



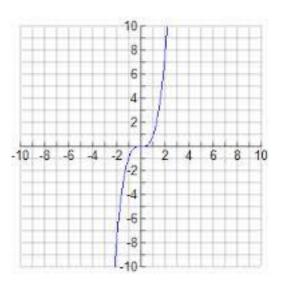
Example 4: Which of the following graphs represent functions that have inverse functions?



GRAPHS OF A FUNCTION AND ITS INVERSE FUNCTION

There is a	between the graph of a one-to-one function	
and its inverse	Because inverse functions have ordered pairs with	
the coordinates	, if the point is on the graph	
of, the point	is on the graph of	The points
and are	with respect to	the line
Therefore, the graph of	is a	of the graph
of about the line	·	

Example 5: Use the graph of f below to draw the graph of its inverse function.



Section 9.3: EQUATIONS AND INEQUALITIES INVOLVING ABSOLUTE VALUE

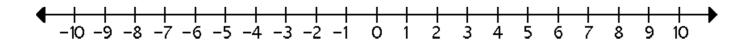
When you are done with your homework you should be able to...

- π Solve absolute value equations
- π Solve absolute value inequalities in the form |u| < c
- π Solve absolute value inequalities in the form |u| > c
- $\pi\,$ Recognize absolute value inequalities with no solution or all real numbers as solutions
- π Solve problems using absolute value inequalities

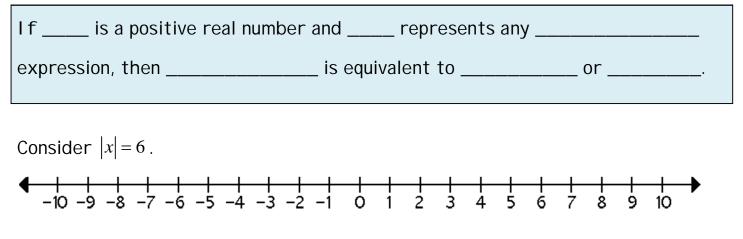
WARM-UP:

Graph the solutions of the inequality.

a. -6 < x < 6



REWRITING AN ABSOLUTE VALUE EQUATION WITHOUT ABSOLUTE VALUE BARS



Now consider
$$|x-3| = 6$$
.
 $-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10$

Example 1: Solve.

a. |5x+7| = 12

b. 7|-x+11| = 21

C. |x-4| - 8 = 9

d.
$$|x| + 5 = 4$$

REWRITING AN ABSOLUTE VALUE EQUATION WITH TWO ABSOLUTE VALUES WITHOUT ABSOLUTE VALUE BARS

1.6 these		
IT, then	_ Or	

Example 2: Solve.

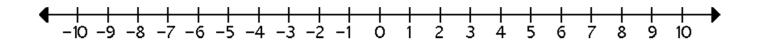
|2x-7| = |x-12|

SOLVING ABSOLUTE VALUE INEQUALITIES OF THE FO	RM u	< c
---	------	-----

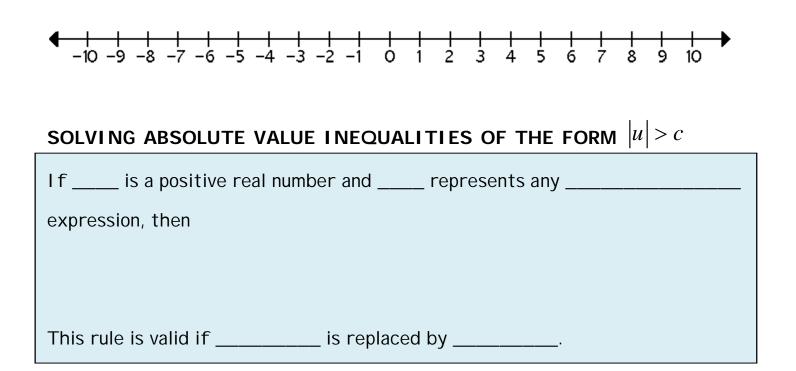
If is a positive real number and represents any	
expression, then	
This rule is valid if is replaced by	

Example 3: Solve and graph the solution set on a number line:

a. |x| < 6

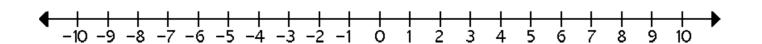


b.
$$-3|2x+7|+8 \ge -1$$



Example 4: Solve and graph the solution set on a number line:

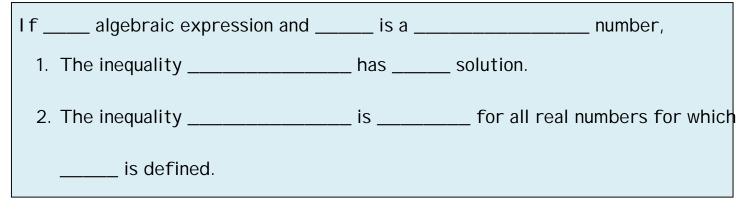
a. |x| > 6



b. $5|12x-1|-10 \ge 2$



ABSOLUTE VALUE INEQUALITIES WITH UNUSUAL SOLUTION SETS



APPLICATION

The inequality $|T-50| \le 22$ describes the range of monthly average temperature T, in degrees Fahrenheit, for Albany, New York. Solve the inequality and interpret the solution.

Section 10.1: RADI CAL EXPRESSIONS AND FUNCTIONS

When you are done with your homework you should be able to...

- π Evaluate square roots
- π Evaluate square root functions
- $\pi~$ Find the domain of square root functions
- π Use models that are square root functions
- π Simplify expressions of the form $\sqrt{a^2}$
- π Evaluate cube root functions
- π Simplify expressions of the form $\sqrt[3]{a^3}$
- π Find even and odd roots
- π Simplify expressions of the form $\sqrt[n]{a^n}$

WARM-UP:

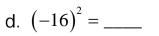
1. Fill in the blank.

a.
$$5 \cdot _ = 5^2$$

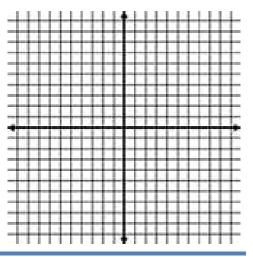
b.
$$x^3 \cdot \underline{} = x^6$$

C.
$$(y^2)^{--} = y^{16}$$

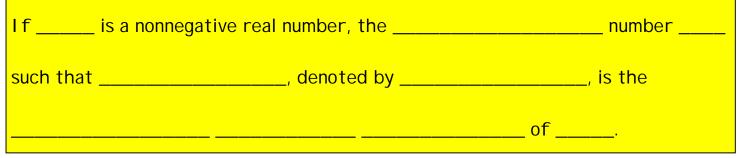
- 2. Solve |x| = 3.
- 3. Graph $f(x) = \sqrt{x}$



e.
$$-(16)^2 =$$



DEFINITION OF THE PRINCIPAL SQUARE ROOT



Example 1: Evaluate.

a. √169

d. $\sqrt{36+64}$

e. $\sqrt{36} + \sqrt{64}$

- b. $\sqrt{0.04}$
- c. $\sqrt{\frac{49}{64}}$

SQUARE ROOT FUNCTIONS

Because each	_ number,, ha	as precisely one princ	cipal
square root,, there is a squar	re root function de	fined by	
The domain of this function is	We can gr	aph	by
selecting nonnegative real numbers for	It is easie	est to pick perfect	

How is this different than the graph we sketched in the warm-up?

Example 2: Find the indicated function value.

a.
$$f(x) = \sqrt{6x+10}; f(1)$$

b. $g(x) = -\sqrt{50-2x}; f(5)$

Example 3: Find the domain of $f(x) = \sqrt{10x-7}$

SIMPLIFYING $\sqrt{a^2}$ For any real number a, In words, the principal square root of _____ is the ______ of _____.

Example 4: Simplify each expression.

a.
$$\sqrt{(-9)^2}$$

b. $\sqrt{(x-23)^2}$
c. $\sqrt{100x^{10}}$
d. $\sqrt{x^2 - 14x + 49}$

DEFINITION OF THE CUBE ROOT OF A NUMBER

The cube root of a real number *a* is written ______. ______ means that ______.

CUBE ROOT FUNCTIONS

Unlike square roots, the cube root of a negative number is a	
number. All real numbers have cube roots. Because every	
number,, has precisely one cube root,, there is a cube root	
function defined by	
The domain of this function is We can graph by	
The domain of this function is We can graph by selecting real numbers for	
selecting real numbers for It is easiest to pick perfect	
selecting real numbers for It is easiest to pick perfect SIMPLIFYING $\sqrt[3]{a^3}$	

Example 5: Find the indicated function value.

a.
$$f(x) = \sqrt[3]{x-20}; f(12)$$

b.
$$g(x) = \sqrt[3]{2x}; g(32)$$

Example 6: Graph the following functions by plotting points.

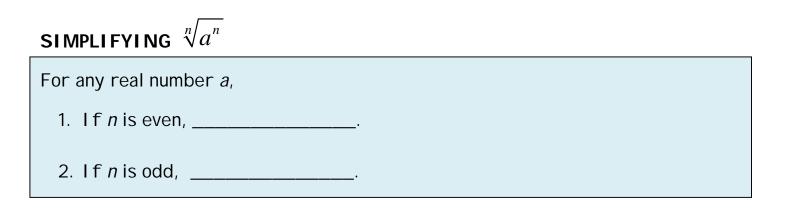
$$x \qquad f(x) = \sqrt{x+1} \qquad (x, y)$$

a.
$$f(x) = \sqrt{x+1}$$

b.
$$g(x) = \sqrt[3]{x}$$

x	$g(x) = \sqrt[3]{x}$	(x, y)





Example 7: Simplify.

a.
$$\sqrt[6]{x^6}$$
 b. $\sqrt[5]{(2x-1)^5}$ c. $\sqrt[8]{(-2)^8}$

APPLICATION

Police use the function $f(x) = \sqrt{20x}$ to estimate the speed of a car, f(x), in miles per hour, based on the length, x, in feet, of its skid marks upon sudden braking on a dry asphalt road. A motorist is involved in an accident. A police officer measures the car's skid marks to be 45 feet long. If the posted speed limit is 35 miles per hour and the motorist tells the officer she was not speeding, should the officer believe her?

Section 10.2: RATIONAL EXPONENTS

When you are done with your homework you should be able to...

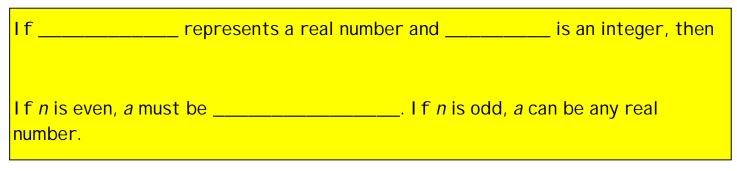
- π Use the definition of $a^{\overline{n}}$
- π Use the definition of $a^{\frac{m}{n}}$
- π Use the definition of $a^{-\frac{m}{n}}$
- π Simplify expressions with rational exponents
- π Simplify radical expressions using rational exponents

WARM-UP:

1.
$$\frac{1}{2} - \frac{3}{8}$$

2. Simplify
$$\frac{x^2 y^5}{(2x^3)^{-3}}$$

THE DEFINITION OF $a^{\hat{n}}$



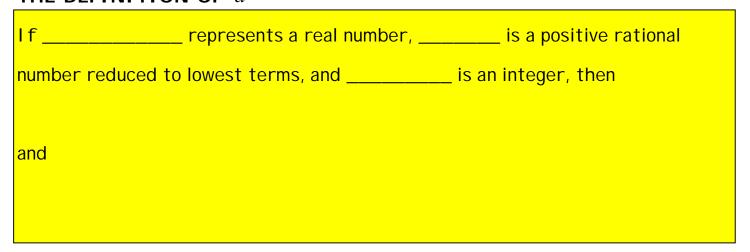
Example 1: Use radical notation to rewrite each expression. Simplify, if possible.

a.
$$400^{\frac{1}{2}}$$
 b. $(7xy^2)^{\frac{1}{3}}$ c. $(-32)^{\frac{1}{5}}$

Example 2: Rewrite with rational exponents.

a.
$$\sqrt[4]{12st}$$
 b. $\sqrt[3]{\frac{3z^2}{10}}$ c. $\sqrt{5xyz}$

THE DEFINITION OF $a^{\frac{m}{n}}$



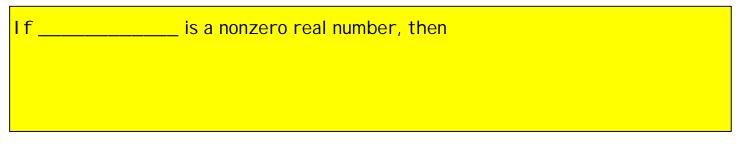
Example 3: Use radical notation to rewrite each expression. Simplify, if possible.

a.
$$16^{\frac{3}{4}}$$
 b. $(-243)^{\frac{2}{3}}$ c. $(9)^{\frac{5}{2}}$

Example 4: Rewrite with rational exponents.

a.
$$\sqrt[3]{12^4}$$

b. $\sqrt[5]{\left(\frac{x}{y}\right)^4}$
c. $\sqrt{(11t)^3}$

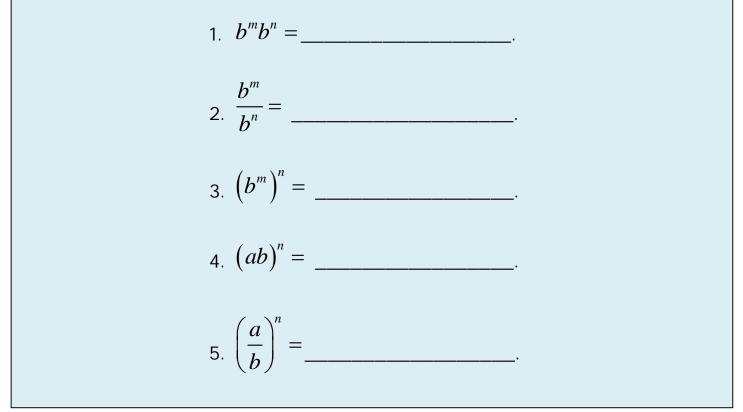


Example 5: Rewrite each expression with a positive exponent. Simplify, if possible.

a.
$$144^{-\frac{1}{2}}$$
 b. $(-8)^{-\frac{2}{3}}$ c. $(32)^{-\frac{3}{5}}$

PROPERTIES OF RATIONAL EXPONENTS

If m and n are rational exponents, and a and b are real numbers for which the following expressions are defined, then



Example 6: Use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers.

a. $5^{\frac{2}{3}} \cdot 5^{\frac{1}{3}}$

b. $(125x^9y^6)^{\frac{1}{3}}$

SIMPLIFYING RADICAL EXPRESSIONS USING RATIONAL EXPONENTS

1. Rewrite each radical expression as an	expression
with a	
2. Simplify using of rational exponents.	
3 in radical notation if rational exponents still a	appear.

Example 7: Use rational exponents to simplify. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers.

a.
$$\left(\sqrt[3]{xy}\right)^{21}$$

b. $\sqrt{3} \cdot \sqrt[3]{3}$

c.
$$\frac{\sqrt[4]{a^3b^3}}{\sqrt{ab}}$$

Section 10.3: MULTI PLYI NG AND SI MPLI FYI NG RADI CAL EXPRESSIONS

When you are done with your homework you should be able to...

- $\pi~$ Use the product rule to multiply radicals
- $\pi~$ Use factoring and the product rule to simplify radicals
- π $\,$ Multiply radicals and then simplify

WARM-UP:

1. Use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers.

a.
$$\frac{4^{\frac{2}{3}}}{4^{\frac{1}{3}}}$$
 b. $(196x^{10}y^{22})^{\frac{1}{2}}$

2. Factor out the greatest common factor. $8x^{\frac{1}{4}} + 16x$

3. Multiply
$$\left(x^{\frac{1}{2}}+3\right)\left(x^{\frac{3}{2}}-10\right)$$

THE PRODUCT RULE FOR RADICALS

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real (numbers, then	
The	_oftwo	_ is the
root of the	of the radicals.	
Example 1. Multiply		

Example 1: Multiply.

a. $\sqrt{2} \cdot \sqrt{11}$ b. $\sqrt[3]{4x} \cdot \sqrt[3]{12x}$ c. $\sqrt{x-1} \cdot \sqrt{x+1}$

SIMPLIFYING RADICAL EXPRESSIONS BY FACTORING

A radical expression whose	e index is <i>n</i> is	when its radicand
has no following procedure:	that are perfect	powers. To simplify, use the
1. Write the radicand a	s the	_ of two factors, one of which is
the	_perfect p	oower.
2. Use the	rule to take the	root of each factor.
3. Find the ro	oot of the perfect <i>n</i> th po	ower.

Example 2: Simplify by factoring. Assume that all variables represent positive numbers.

a. $\sqrt{12}$ b. $\sqrt[3]{81x^5}$ c. $\sqrt{288x^{11}y^{14}z^3}$

**For the remainder of this chapter, in situations that do not involve functions, we will assume that no radicands involve negative quantities raised to even powers. Based upon this assumption, absolute vale bars are not necessary when taking even roots.

SIMPLIFYING WHEN VARIABLES TO EVEN POWERS IN A RADICAND ARE NONNEGATIVE QUANTITIES

For any _____ real number *a*,

Example 3: Simplify.

a. $\sqrt{108x^4y^3}$ b. $\sqrt[5]{64x^8y^{10}z^5}$ c. $\sqrt[4]{32x^{12}y^{15}}$

Example 4: Multiply and simplify.

a.
$$\sqrt{15xy} \cdot \sqrt{3xy}$$
 b. $\sqrt[3]{10x^2y} \cdot \sqrt[3]{200x^2y^2}$

Example 5: Simplify.

a.
$$\sqrt{5xy} \cdot \sqrt{10xy^2}$$

b.
$$\sqrt[5]{8x^4y^3z^3} \cdot \sqrt[5]{8xy^9z^8}$$

c.
$$(2x^2y\sqrt[4]{8xy})(-32xy^2\sqrt[4]{2x^2y^3})$$

Section 10.4: ADDI NG, SUBTRACTI NG, AND DI VI DI NG RADI CAL EXPRESSI ONS

When you are done with your 10.4 homework you should be able to...

- π Add and subtract radical expressions
- $\pi~$ Use the quotient rule to simplify radical expressions
- $\pi~$ Use the quotient rule to divide radical expressions

WARM-UP:

Simplify.

a.
$$\frac{8x^3y^5}{2x^{-2}y^2}$$
 b. $3xy^2\sqrt[3]{16x^2y^2}$

THE QUOTIENT RULE FOR RADICALS

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and	, then
The root of a	is the of the
roots of the	and

Example 1: Simplify using the quotient rule.

a.
$$\sqrt{\frac{20}{9}}$$
 b. $\sqrt[3]{\frac{x^6}{27y^{12}}}$

DIVIDING RADICAL EXPRESSIONS

If
$$\sqrt[n]{a}$$
 and $\sqrt[n]{b}$ are real numbers, and _____, then
To ______ two radical expressions with the SAME _____, divide
the radicands and retain the _____.

Example 2: Divide and, if possible, simplify.

a.
$$\frac{\sqrt{120x^4}}{\sqrt{3x}}$$
 b. $\frac{\sqrt[3]{128x^4y^2}}{\sqrt[3]{2xy^{-4}}}$

Example 3: Perform the indicated operations.

a.
$$\sqrt{2} + 5\sqrt{2}$$

c. $\frac{\sqrt{27}}{2} + \frac{\sqrt{75}}{7}$

b.
$$-\sqrt{20x^3} + 3x\sqrt{80x}$$
 d. $\frac{16x^4\sqrt[3]{48x^3y^2}}{8x^3\sqrt[3]{3x^2y}} - \frac{20\sqrt[3]{2x^3y}}{4\sqrt[3]{x^{-1}}}$

10.5: MULTI PLYI NG WI TH MORE THAN ONE TERM AND RATI ONALI ZI NG DENOMI NATORS

When you are done with your 10.5 homework you should be able to...

- π Multiply radical expressions with more than one term
- π Use polynomial special products to multiply radicals
- π $\,$ Rationalize denominators containing one term
- π Rationalize denominators containing two terms
- π Rationalize numerators

WARM-UP:

Multiply.

a.
$$x^{\frac{1}{2}}(x-3)$$
 b. $(x^2-5)(x^2+5)$ c. $(3x-1)^2$

MULTIPLYING RADICAL EXPRESSIONS WITH MORE THAN ONE TERM

Radical expressions with more than one term are multiplied in much the same way

as ______ with more than one term are multiplied.

Example 1: Multiply.

a. $\sqrt{5}(x+\sqrt{10})$ c. $(3\sqrt{3}-4\sqrt{2})(6\sqrt{3}-10\sqrt{2})$

b.
$$\sqrt[3]{y^2} \left(\sqrt[3]{16} - \sqrt[3]{y} \right)$$

Example 2: Multiply.

a.
$$\left(x - \sqrt{10}\right)\left(x + \sqrt{10}\right)$$

b.
$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})$$

c.
$$(\sqrt{3} + \sqrt{15})^2$$

CONJUGATES

Radical expressions	s that involve the	and	of
the	two terms are called		_·

RATIONALIZING DENOMINATORS CONTAINING ONE TERM

When you a radical expression as an		
expression in which the c	lenominator no longer cont	ains any
When the denominator of	contains a	radical with an <i>n</i> th root,
multiply the	and the	by a radical
of index <i>n</i> that produce	s a perfect	power in the denominator's
radicand.		

Example 3: Rationalize each denominator.

a. $\frac{2}{\sqrt{3}}$ c. $\sqrt{\frac{5}{6xy}}$

b.
$$\sqrt[3]{\frac{13}{2}}$$
 d. $\frac{4x}{\sqrt[4]{8xy^3}}$

RATIONALIZING DENOMINATORS CONTAINING TWO TERMS

When the denominator contains two terms with one or more _____

roots, multiply the _____ and the _____ by a

by the _____ of the denominator.

Example 4: Rationalize each denominator.

a. $\frac{12}{1-\sqrt{3}}$

b.
$$\frac{6}{\sqrt{11} + \sqrt{5}}$$

c.
$$\frac{2\sqrt{3}+7\sqrt{7}}{2\sqrt{3}-7\sqrt{7}}$$

d.
$$\frac{\sqrt{x+8}}{\sqrt{x+3}}$$

RATIONALIZING NUMERATORS

To rationalize a numerator, multiply by_____ to eliminate the radical in

the _____.

Example 5: Rationalize each numerator.

a. $\sqrt{\frac{3}{2}}$

b.
$$\frac{\sqrt[3]{5x^2}}{4}$$

c.
$$\frac{\sqrt{x} - \sqrt{2}}{x - 2}$$

Section 10.6: RADI CAL EQUATIONS

When you are done with your homework you should be able to...

- π Solve radical equations
- $\pi~$ Use models that are radical functions to solve problems

WARM-UP:

Solve:

 $2x^2 - 3x = 5$

SOLVING RADICAL EQUATIONS CONTAINING nth ROOTS

1.	If necessary, arrange terms so that radical is
	on one side of the equation.
2.	Raise sides of the equation to the power to eliminate the
	<i>n</i> th root.
3.	the resulting equation. If this equation still contains radicals,
	steps 1 and 2!
4.	all proposed solutions in the equation.

Example 1: Solve.

a.
$$\sqrt{5x-1} = 8$$

b.
$$\sqrt{2x+5} + 11 = 6$$

$$x = \sqrt{6x + 7}$$

d.
$$\sqrt[3]{4x-3-5} = 0$$

e.
$$\sqrt{x+2} + \sqrt{3x+7} = 1$$

f.
$$2\sqrt{x-3} + 4 = x+1$$

g.
$$2(x-1)^{\frac{1}{3}} = (x^2+2x)^{\frac{1}{3}}$$

Example 2: If $f(x) = x - \sqrt{x-2}$, find all values of x for which f(x) = 4.

Example 3: Solve
$$r = \sqrt{\frac{A}{4\pi}}$$
 for A.

Example 4: Without graphing, find the *x*-intercept of the function $f(x) = \sqrt{2x-3} - \sqrt{2x} + 1$.

APPLICATION

A basketball player's hang time is the time spent in the air when shooting a basket. The formula $t = \frac{\sqrt{d}}{2}$ models hang time, t, in seconds, in terms of the vertical distance of a player's jump, d, in feet.

When Michael Wilson of the Harlem Globetrotters slam-dunked a basketball 12 feet, his hang time for the shot was approximately 1.16 seconds. What was the vertical distance of his jump, rounded to the nearest tenth of a foot?

Section 10.7: COMPLEX NUMBERS

When you are done with your homework you should be able to...

- $\pi~$ Express square roots of negative numbers in terms of i
- π Add and subtract complex numbers
- π Multiply complex numbers
- π Divide complex numbers
- π Simplify powers of *i*

WARM-UP:

Rationalize the denominator:

a.
$$\frac{5}{\sqrt{x}}$$
 b. $\frac{3-\sqrt{x}}{3+\sqrt{x}}$

THE IMAGINARY UNIT i

The imaginary unit _____ is defined as

THE SQUARE ROOT OF A NEGATIVE NUMBER

If <i>b</i> is a positive real number, then		
Example 1: Write as a multiple of <i>i</i> .		
a. $\sqrt{-100}$	b. $\sqrt{-50}$	

COMPLEX NUMBERS AND IMAGINARY NUMBERS

The set of all numbers in the form
with real numbers a and b, and i, the imaginary unit, is called the set of
The real number is called the complex
number is called an number.

Example 2: Express each number in terms of *i* and simplify, if possible.

a. $7 + \sqrt{-4}$ b. $-3 - \sqrt{-27}$

ADDING AND SUBTRACTING COMPLEX NUMBERS

1.
$$(a+bi)+(c+di) =$$

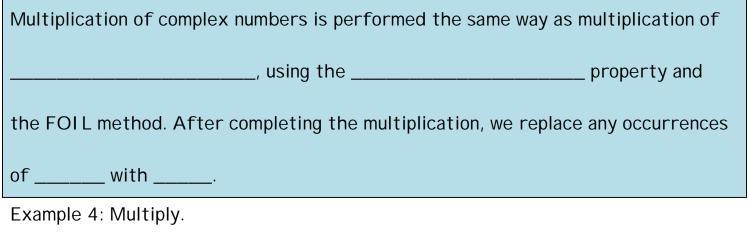
2. $(a+bi)-(c+di) =$ ______

Example 3: Add or subtract as indicated. Write the result in the form a + bi.

a.
$$(6+5i)+(4+3i)$$

b. $(-7+3i)-(9-10i)$

MULTIPLYING COMPLEX NUMBERS



a. (5+8i)(4i-3) b. (2+7i)(2-7i) c. $(3+\sqrt{-16})^2$

CONJUGATES AND DIVISION

The of the complex number $a+bi$ is The		
of the complex number $a-bi$ is Conjugates		
are used to complex numbers. The goal of the division procedure		
is to obtain a real number in the This real number		
becomes the denominator of and in By		
multiplying the numerator and denominator of the quotient by the		
of the denominator, you will obtain this real number in		
the denominator.		

Example 5: Divide and simplify to the form a+bi.

a.
$$\frac{9}{-8i}$$
 d. $\frac{6-3i}{4+2i}$

b. $\frac{3}{4+i}$

e.
$$\frac{1-i}{1+i}$$

c. $\frac{5i}{2-3i}$

SIMPLIFYING POWERS OF *i*

Express the given power of *i* in terms of _____.

2. Replace _____ with _____ and simplify.

Example 6: Simplify.

a. *i*¹⁴

b. *i*¹⁵

c. *i*⁴⁶

Section 11.1: THE SQUARE ROOT PROPERTY AND COMPLETING THE SQUARE; DI STANCE AND MI DPOI NT FORMULAS

When you are done with your homework you should be able to...

- π Solve quadratic equations using the square root property
- π Complete the square of a binomial
- π $\,$ Solve quadratic equations by completing the square $\,$
- π $\,$ Solve problems using the square root property
- π Find the distance between two points
- π Find the midpoint of a line segment

WARM-UP:

Solve.

a.
$$(x-1)^2 = 4$$
 b. $(x-5)^2 = 0$

THE SQUARE ROOT PROPERTY

If u is an algebraic expression and d is a nonzero real number, then			
if,	then	or	
Equivalently,			
if,	then	or	

Example 1: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a + bi.

a.
$$x^2 = 9$$

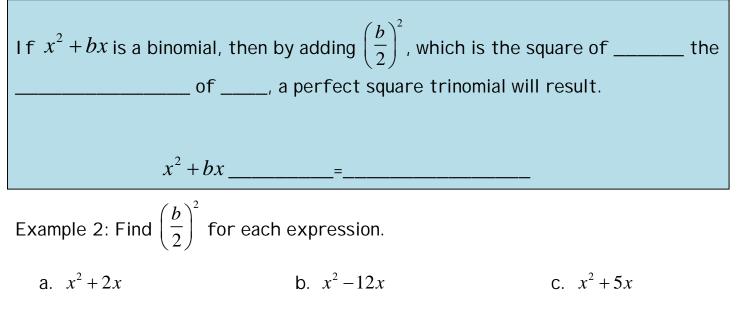
d. $x^2 - 10x + 25 = 1$

b. $2x^2 - 10 = 0$

e.
$$3(x+2)^2 = 36$$

c. $4x^2 + 49 = 0$

COMPLETING THE SQUARE



SOLVING QUADRATIC EQUATIONS BY COMPLETING THE SQUARE

Сс 1.	Consider a quadratic equation in the form $ax^2 + bx + c$. 1. If $a \neq 1$, divide both sides of the equation by		
2.	I solate $x^2 + bx$.		
3.	Add to BOTH sides of the equation.		
4.	Factor and simplify.		
5.	Apply the square root property.		
6.	Solve.		
7.	Check your solution(s) in the equation.		

Example 3: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a + bi.

a. $x^2 + 8x - 2 = 0$

b. $x^2 - 3x - 5 = 0$

c.
$$3x^2 - 6x = -2$$

d.
$$4x^2 - 2x + 5 = 0$$

A FORMULA FOR COMPOUND INTEREST

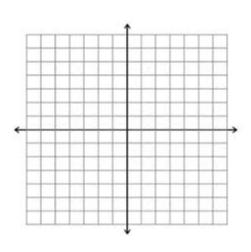
Suppose that an amount of money, _____, is invested at interest rate, _____, compounded annually. In _____ years, the amount, _____, or balance, in the account is given by the formula

Example 4: You invested \$4000 in an account whose interest is compounded annually. After 3 years, the amount, or balance, in the account is \$4300. Find the annual interest rate.

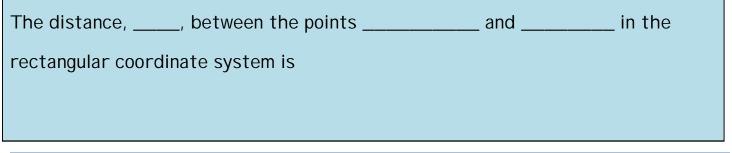
THE PYTHAGOREAN THEOREM

The sum of the squares of the	of the of	a
triangle equals the	of the	_of
the		
If the legs have lengths and _	, and the hypotenuse has length	
then		

Example 5: The doorway into a room is 4 feet wide and 8 feet high. What is the diameter of the largest circular tabletop that can be taken through this doorway diagonally?



THE DISTANCE FORMULA



Example 6: Find the distance between each pair of points.

a. (5,1) and (8,-2) b. $(2\sqrt{3},\sqrt{6})$ and $(-\sqrt{3},5\sqrt{6})$

THE MIDPOINT FORMULA

Consider a line segment whose endpoints are ______ and ______. The coordinates of the segment's midpoints are

Example 7: Find the midpoint of the line segment with the given endpoints.

a. (10,4) and (2,6)
b.
$$\left(-\frac{2}{5}, \frac{7}{15}\right)$$
 and $\left(-\frac{2}{5}, -\frac{4}{15}\right)$

Section 11.2: THE QUADRATIC FORMULA

When you are done with your homework you should be able to...

- π Solve quadratic equations using the quadratic formula
- π Use the discriminant to determine the number and type of solutions
- $\pi\,$ Determine the most efficient method to use when solving a quadratic equation
- π Write quadratic equations from solutions
- $\pi~$ Use the quadratic formula to solve problems

WARM-UP:

Solve for x by completing the square and applying the square root property.

 $ax^2 + bx + c = 0$

THE QUADRATIC FORMULA

The solutions of a quadratic equation in standard form $ax^2 + bx + c = 0$, with $a \neq 0$, are given by the **<u>quadratic formula</u>**:

STEPS FOR USING THE QUADRATIC FORMULA

1. Write the quadratic equation in form ().
2. Determine the numerical values for,, and
3. Substitute the values of,, and into the quadratic
formula and the expression.
4. Check your solution(s) in the equation.

Example 1: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a + bi.

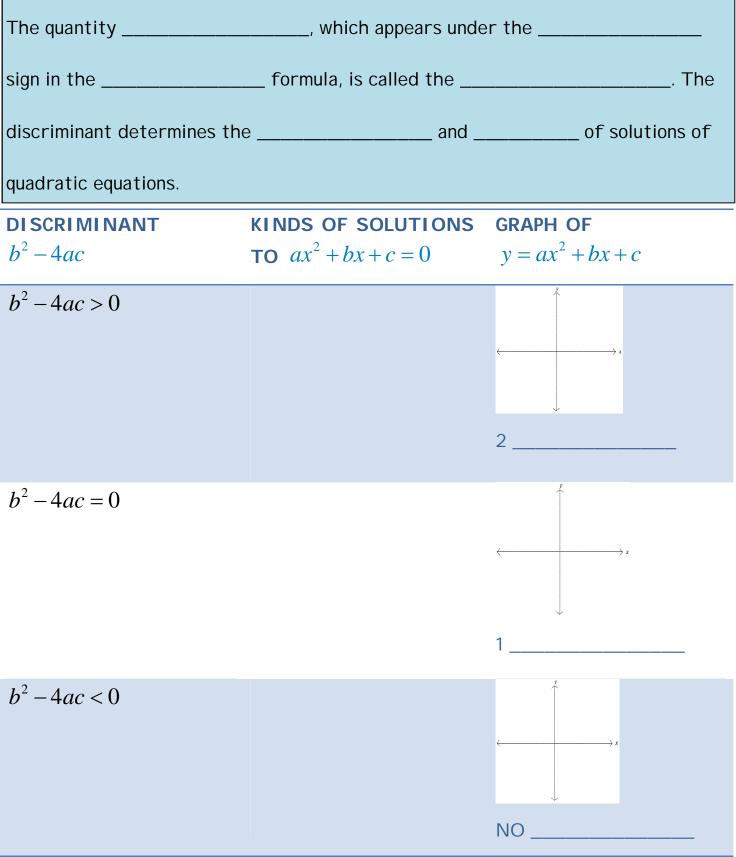
a.
$$4x^2 + 3x = 2$$

b.
$$3x^2 = 4x - 6$$

$$2x(x+4) = 3x-3$$

d.
$$x^2 + 5x - 10 = 0$$

THE DISCRIMINANT



Example 2: Compute the discriminant. Then determine the number and type of solutions.

a. $2x^2 - 4x + 3 = 0$ b. $4x^2 = 20x - 25$ c. $x^2 + 2x - 3 = 0$

DESCRIPTION AND FORM OF THE
QUADRATIC EQUATIONMOST EFFICIENT SOLUTION
METHOD
$$ax^2 + bx + c = 0$$
, and $ax^2 + bx + c$ can be
easily factored. $ax^2 + bx + c = 0$ $ax^2 + c = 0$ The quadratic equation has no ______term (_____). $u^2 = d$; u is a first-degree polynomial. $ax^2 + bx + c = 0$, and $ax^2 + bx + c$ cannot
factored or the factoring is too difficult.

THE ZERO-PRODUCT PRINCIPLE IN REVERSE

If or, then	
Example 3: Write a quadratic equation with the given solution set.	

a. $\{-2, 6\}$ b. $\{-\sqrt{3}, \sqrt{3}\}$ c. $\{2+i, 2-i\}$

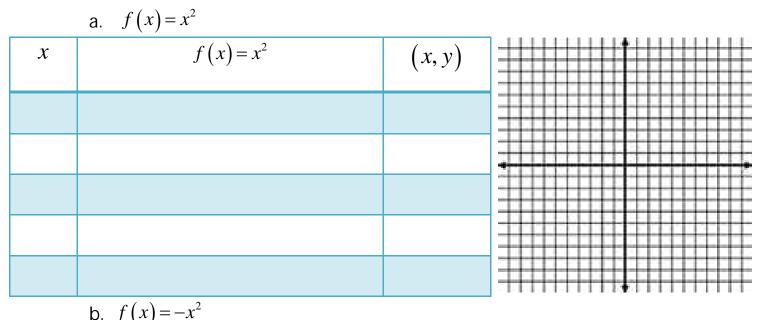
Example 4: The hypotenuse of a right triangle is 6 feet long. One leg is 2 feet shorter than the other. Find the lengths of the legs.

Section 11.3: QUADRATIC FUNCTIONS AND THEIR GRAPHS

When you are done with your homework you should be able to...

- π Recognize characteristics of parabolas
- π Graph parabolas in the form $f(x) = a(x-h)^2 + k$
- π Graph parabolas in the form $f(x) = a(x-h)^2 + k$
- π Determine a quadratic function's minimum or maximum value
- π Solve problems involving a quadratic function's minimum or maximum value

WARM-UP: Graph the following functions by plotting points.



	\mathbf{S} : \mathbf{J} (\mathbf{n})		
x	$f(x) = -x^2$	(x, y)	

QUADRATIC FUNCTIONS I	N THE FORM $f(x)$	$a(x-h)^2 + k$
The graph of		
is a wh	10SE	is the point
The parabola is	with respec	ct to the line I f
, the parabola op	ens upwards; if	, the parabola opens

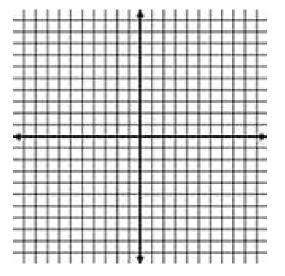
 $f(x) = a(x-h)^2 + k$

GRAPHING QUADRATIC FUNCTIONS WITH EQUATIONS IN THE FORM $f(x) = a(x-h)^2 + k$

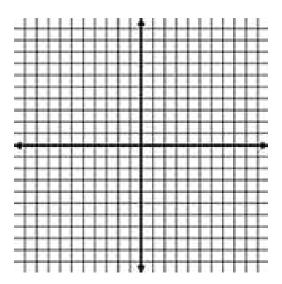
1. Determine whether the opens or
If the parabola opens upward and if
the parabola opens
2. Determine the of the parabola. The vertex is
3. Find any by solving
4. Find the by computing
5. Plot the, the, and additional points as
necessary. Connect these points with a curve that is
shaped like a or an inverted bowl.

Example 1: Use the vertex and intercepts to sketch the graph of each quadratic function. Use the graph to identify the function's range.

a.
$$f(x) = (x-1)^2 - 2$$



b.
$$f(x) = 2(x+2)^2 - 1$$



THE VERTEX OF A PARABOLA WHHOSE EQUATION IS $f(x) = ax^2 + bx + c$

The parabola's vertex is	. The is
and the	is found by substituting the
into the parabola's equation	and
the function at this value of	

Example 2: Find the coordinates of the vertex for the parabola defined by the given quadratic function.

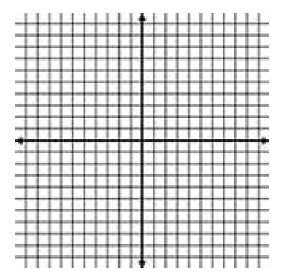
a. $f(x) = 3x^2 - 12x + 1$ b. $f(x) = -2x^2 + 7x - 4$ c. $f(x) = -3(x-2)^2 + 12$

GRAPHING QUADRATIC FUNCTIONS WITH EQUATIONS IN THE FORM $f(x) = ax^2 + bx + c$

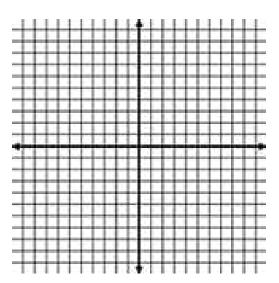
1. Determine whether the	opens	or
If_	the parabola opens u	upward and if
the para	ibola opens	
2. Determine the	_ of the parabola. The vertex is _	
3. Find any	by solving	
4. Find the by	y computing	
5. Plot the	_, the, and addit	ional points as
necessary. Connect these p	pints with a cur	ve that is
shaped like a	_ or an inverted bowl.	

Example 3: Use the vertex and intercepts to sketch the graph of each quadratic function. Use the graph to identify the function's range.

a.
$$f(x) = x^2 - 2x - 15$$



b.
$$f(x) = 5 - 4x - x^2$$



MINIMUM AND MAXIMUM: QUADRATIC FUNCTIONS

Consider the quadratic funct	ion $f(x) = ax^2 + bx + c$.	
1. If, then	_ has a	_ that occurs at
This	is	
2. If, then	_ has a	_ that occurs at
This	is	
In each case, the value of	gives the	of the minimum
or maximum value. The valu	ue of, or	, gives that minimum or
maximum value.		

Example 4: Among all pairs of numbers whose sum is 20, find a pair whose product is as large as possible. What is the maximum product?

Example 5: You have 200 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area. What is the largest area that can be enclosed?

Section 11.4: EQUATIONS QUADRATIC IN FORM

When you are done with your homework you should be able to...

 π $\,$ Solve equations that are quadratic in form

WARM-UP: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a + bi.

a. $-5x^2 + x = 3$

b.
$$x^2 = x - 6$$

EQUATIONS WHICH ARE QUADRATIC IN FORM

An equation that is	in is c	one that can be
expressed as a quadratic equation using an	appropriate	
In an equation that is quadratic in form, the	e	factor in one
term is the of the va	riable factor in the o	ther variable
term. The third term is a	By letting	equal the
variable factor that reappears squared, a q	uadratic equation in _	will result.
Solve this quadratic equation for usin	ng the methods you le	arned earlier.
Then use your substitution to find the value	es for the	in the
equation.		

Example 1: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a + bi.

a. $x^4 - 13x^2 + 36 = 0$

b.
$$x^4 + 4x^2 = 5$$

$$x + \sqrt{x} - 6 = 0$$

d.
$$(x+3)^2 + 7(x+3) - 18 = 0$$

e.
$$x^{-2} - 6x^{-1} = -4$$

Section 12.1: EXPONENTIAL FUNCTIONS

When you are done with your homework you should be able to...

- π Evaluate exponential functions
- π Graph exponential functions
- π Evaluate functions with base e
- π Use compound interest formulas

WARM-UP:

Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a + bi.

$$(x^2 - 2)^2 - (x^2 - 2) = 6$$

DEFINITION OF AN EXPONENTIAL FUNCTION

The exponential function with base is def	fined by
where is a constant other than _	(and) and
is any real number.	

Example 1: Determine if the given function is an exponential function.

a.
$$f(x) = 3^x$$

b. $g(x) = (-4)^{x+1}$

Example 2: Evaluate the exponential function at x = -2, 0, and 2.

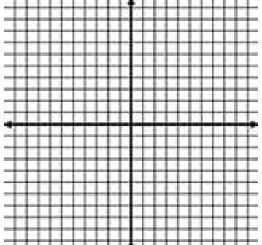
a.
$$f(x) = 2^{x}$$

b. $g(x) = \left(\frac{1}{3}\right)^{x}$

Example 3: Sketch the graph of each exponential function.

b.
$$g(x) = 3^{-x}$$

a. $f(x) = 3^x$

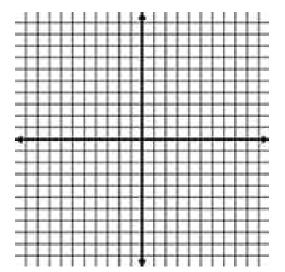


How are these two graphs related?

Example 4: Sketch the graph of each exponential function.

b.
$$g(x) = 2^{x+1}$$

a. $f(x) = 2^x$



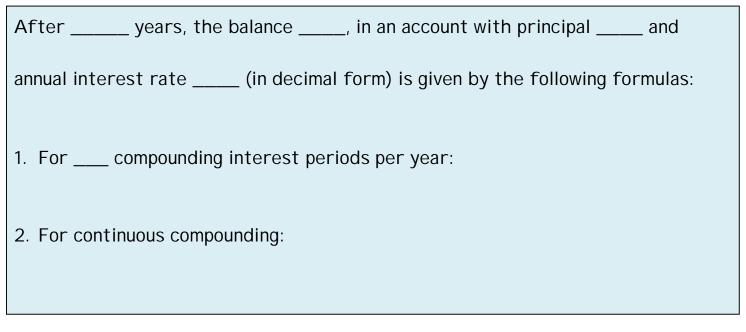
How are these two graphs related?

CHARACTERISTICS OF EXPONENTIAL FUNCTIONS OF THE FORM $f(x) = b^x$

v		
	1.	The domain of $f(x) = b^x$ consists of all real numbers: The range
		of $f(x) = b^x$ consists of all real numbers:
	2.	The graphs of all exponential functions of the form $f(x) = b^x$ pass through
		the point because (). The is
	3.	If, $f(x) = b^x$ has a graph that goes to the and
		is an, the steeper
		the
	4.	If, $f(x) = b^x$ has a graph that goes to the and
		is a function. The smaller the value of, the steeper
		the
	5.	The graph of $f(x) = b^x$ approaches, but does not touch, the
		The line is a asymptote.

n $\left(1+\frac{1}{n}\right)^n$	
1	
2	
5	The irrational number,
10	approximately, is called
100	the base. The function
1000	is called the
10000	exponential
100000	function.
100000	
100000000	

FORMULAS FOR COMPOUND INTEREST



Example 5: Find the accumulated value of an investment of \$5000 for 10 years at an interest rate of 6.5% is the money is

a. compounded semiannually:

b. compounded monthly:

c. compounded continuously:

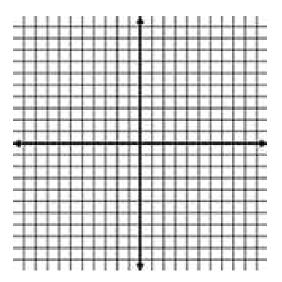
Section 12.2: LOGARI THMIC FUNCTIONS

When you are done with your homework you should be able to...

- $\pi\,$ Change from logarithmic to exponential form
- $\pi~$ Change from exponential to logarithmic form
- π Evaluate logarithms
- $\pi~$ Use basic logarithm properties
- $\pi~$ Graph logarithmic functions
- $\pi~$ Find the domain of a logarithmic function
- $\pi~$ Use common logarithms
- $\pi~$ Use natural logarithms

WARM-UP:

Graph $y = 2^x$.



DEFINITION OF THE LOGARITHMIC FUNCTION

For and _	
	_ is equivalent to
The function	is the logarithmic function with base .

Example 1: Write each equation in its equivalent exponential form:

a.
$$\log_4 x = 2$$
 b. $y = \log_3 81$

Example 2: Write each equation in its equivalent logarithmic form:

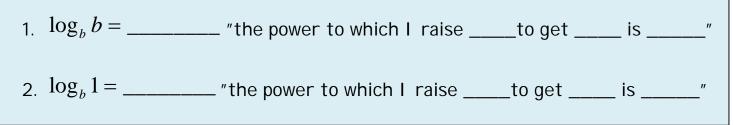
a.
$$e^y = 9$$
 b. $b^4 = 16$

Example 3: Evaluate.

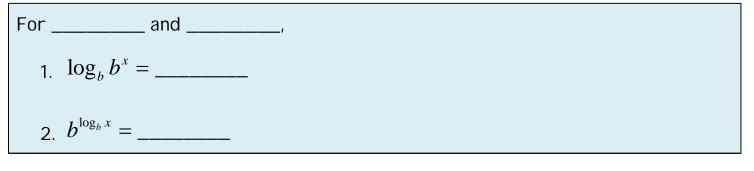
a.
$$\log_5 x = 25$$

b. $\log_{81} x = \frac{1}{2}$

BASIC LOGARITHMIC PROPERTIES INVOLVING 1



INVERSE PROPERTIES OF LOGARITHMS

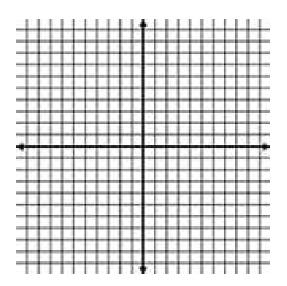


Example 4: Evaluate.

- a. $\log_6 6$ c. $\log_9 1$
- b. $\log_{12} 12^4$ d. $7^{\log_7 24}$

Example 5: Sketch the graph of each logarithmic function.

 $f(x) = \log_3 x$



CHARACTERISTICS OF LOGARITHMIC FUNCTIONS OF THE FORM $f(x) = \log_b x$

1. The domain of $f(x) = \log_b x$ consists of all positive real numbers:
The range of $f(x) = \log_b x$ consists of all real numbers:
2. The graphs of all logarithmic functions of the form $f(x) = \log_b x$ pass
through the point because (). The
is There is no
3. If, $f(x) = \log_b x$ has a graph that goes to the
and is an function.
4. If, $f(x) = \log_b x$ has a graph that goes to the
and is a function.
5. The graph of $f(x) = \log_b x$ approaches, but does not touch, the
The line is a asymptote.

Example 6: Find the domain.

a.
$$f(x) = \log_2(x-4)$$

b. $f(x) = \log_5(1-x)$

COMMON LOGARITHMS

The logarithmic function with base is called the common logarithmic
function. The function is usually expressed as
A calculator with a LOG key can be used to evaluate
common logarithms.

Example 7: Evaluate.

a. log1000

b. log 0.01

PROPERTIES OF COMMON LOGARITHMS

 1. $\log 1 = _$ 3. $\log 10^x = _$

 2. $\log 10 = _$ 4. $10^{\log x} = _$

Example 8: Evaluate.

a. $\log 10^3$

b. $10^{\log 7}$

NATURAL LOGARITHMS

The logarithmic function with base is called the natural logarithmic
function. The function is usually expressed as
A calculator with aLN key can be used to evaluate
common logarithms.

PROPERTIES OF NATURAL LOGARITHMS

1. $\ln l = $	3. $\ln e^x = $
2. $\ln e = $	4. $e^{\ln x} =$

Example 9: Evaluate.

a. $\ln \frac{1}{e^6}$

b. $e^{\ln 300}$

Example 10: Find the domain of $f(x) = \ln(x-4)^2$.

Section 12.3: PROPERTIES OF LOGARITHMS

When you are done with your 12.3 homework you should be able to...

- π Use the product rule
- π Use the quotient rule
- π Use the power rule
- π Expand logarithmic expressions
- π Condense logarithmic expressions
- $\pi~$ Use the change-of-base property

WARM-UP:

Simplify.

a. $5^x \cdot 5^x$

b. $\frac{2^{3x}}{2^x}$

THE PRODUCT RULE

Let,, and be positive real numbers with
The logarithm of a product is the of the

Example 1: Expand each logarithmic expression.

a. $\log_6(6x)$ b. $\ln(x \cdot x)$

THE QUOTIENT RULE

Let,, and be positive real numbers with	
The logarithm of a quotient is the of the	. <u></u> .

Example 2: Expand each logarithmic expression.

a.
$$\log \frac{1}{x}$$
 b. $\log_4 \frac{x}{2}$

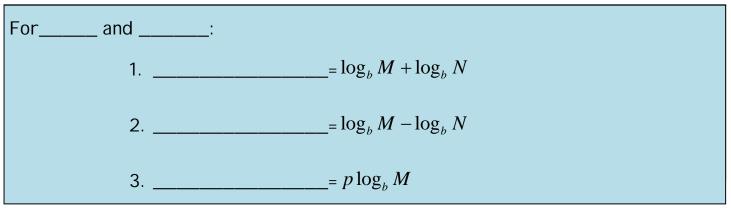
THE POWER RULE

Let,, and be positive real numbers with, and let be any real number.
The logarithm of a quotient is the of the

Example 3: Expand each logarithmic expression.

a. $\log x^2$ b. $\log_5 \sqrt{x}$

PROPERTIES FOR EXPANDING LOGARITHMIC EXPRESSIONS

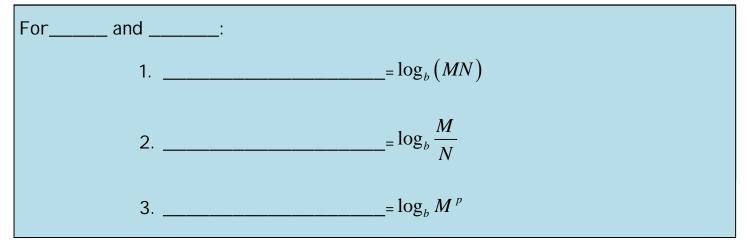


Example 4: Expand each logarithmic expression.

a.
$$\log x^3 \sqrt[3]{y}$$

b. $\log_4 \sqrt{\frac{x}{12y^5}}$

PROPERTIES FOR CONDENSING LOGARITHMIC EXPRESSIONS



Example 5: Write as a single logarithm.

a.
$$3\ln x - \frac{1}{4}\ln(x-2)$$
 b. $\log_4 5 + 12\log_4(x+y)$

THE CHANGE-OF-BASE PROPERTY

For any logarithmic bases and, and any positive number,
The logarithm of with base is equal to the logarithm of with any
new base divided by the logarithm of with that new base.

Why would we use this property?

Example 6: Use common logarithms to evaluate $\log_5 23$.

Example 7: Use natural logarithms to evaluate $\log_5 23$.

What did you find out???

Section 12.4: EXPONENTIAL AND LOGARI THMIC EQUATIONS

When you are done with your 12.4 homework you should be able to...

- π Use like bases to solve exponential equations
- π Use logarithms to solve exponential equations
- $\pi~$ Use exponential form to solve logarithmic equations
- $\pi~$ Use the one-to-one property of logarithms to solve logarithmic equations
- π Solve applied problems involving exponential and logarithmic equations

WARM-UP:

Solve.

 $\frac{x-1}{5} = \frac{2}{5}$

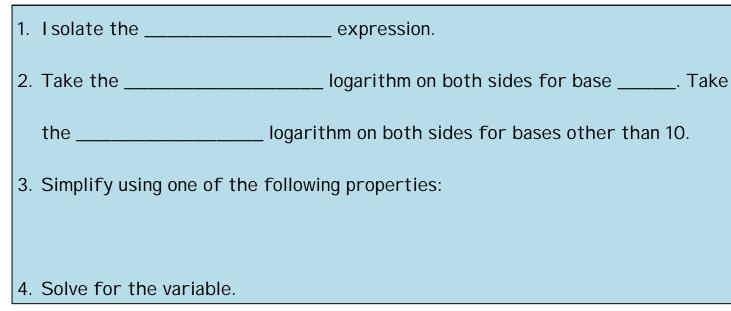
SOLVING EXPONENTIAL EQUATIONS BY EXPRESSING EACH SIDE AS A POWER OF THE SAME BASE

١f	, then
1.	Rewrite the equation in the form
2.	Set
3.	Solve for the variable.

Example 1: Solve.

a.
$$10^{x^2-1} = 100$$
 b. $4^{x+1} = 8^{3x}$

USING LOGARITHMS TO SOLVE EXPONENTIAL EQUATIONS



Example 2: Solve.

a.
$$e^{2x} - 6 = 32$$

b. $\frac{3^{x-1}}{2} = 5$
c. $10^x = 120$

USING EXPONENTIAL FORM TO SOLVE LOGARITHMIC EQUATIONS

- 1. Express the equation in the form _____
- 2. Use the definition of a logarithm to rewrite the equation in exponential form:
- 3. Solve for the variable.
- 4. Check proposed solutions in the ______ equation. I nclude in the

solution set only values for which ______.

Example 3: Solve.

a. $\log_3 x - \log_3 (x - 2) = 4$

b. $\log x + \log(x+21) = 2$

USING THE ONE-TO-ONE PROPERTY OF LOGARITHMS TO SOLVE LOGARITHMIC EQUATIONS

1.	Express the equation in the form This form involves a
	on each side of the
	equation.
2.	Use the one-to-one property to rewrite the equation without logarithms:
3.	Solve for the variable.
4.	Check proposed solutions in the equation. I nclude in the
	solution set only values for which and

Example 4: Solve.

a. $2\log_6 x - \log_6 64 = 0$

b. $\log(5x+1) = \log(2x+3) + \log 2$